Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.911
Filtrar
1.
Planta ; 259(5): 115, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589536

RESUMO

MAIN CONCLUSION: A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan. Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.


Assuntos
Arabidopsis , Oryza , Glicosiltransferases/análise , Oryza/metabolismo , Xilanos/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , 60613 , Poaceae/metabolismo , Parede Celular/metabolismo
2.
J Agric Food Chem ; 72(11): 5805-5815, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451212

RESUMO

Xylan is the main component of hemicellulose. Complete hydrolysis of xylan requires synergistically acting xylanases, such as ß-d-xylosidases. Salt-tolerant ß-d-xylosidases have significant application benefits, but few reports have explored the critical amino acids affecting the salt tolerance of xylosidases. Herein, the site-directed mutation was used to demonstrate that negative electrostatic potentials generated by 19 acidic residues in the loop regions of the structural surface positively correlated with the improved salt tolerance of GH39 ß-d-xylosidase JB13GH39P28. These mutants showed reduced negative potentials on structural surfaces as well as a 13-43% decrease in stability in 3.0-30.0% (w/v) NaCl. Six key residue sites, D201, D259, D297, D377, D395, and D474, were confirmed to influence both the stability and activity of GH39 ß-d-xylosidase. The activity of the GH39 ß-d-xylosidase was found promoting by SO42- and inhibiting by NO3-. Values of Km and Kcat/Km decreased aggravatedly in 30.0% (w/v) NaCl when mutation operated on residues E179 and D182 in the loop regions of the catalytic domain. Taken together, mutation on acidic residues in loop regions from catalytic and noncatalytic domains may cause the deformation of catalytic pocket and aggregation of protein particles then decrease the stability, binding affinity, and catalytic efficiency of the ß-d-xylosidase.


Assuntos
Tolerância ao Sal , Xilosidases , Xilanos/metabolismo , Cloreto de Sódio , Xilosidases/química , Especificidade por Substrato , Concentração de Íons de Hidrogênio
3.
Appl Environ Microbiol ; 90(4): e0222323, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38497645

RESUMO

An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-ß-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0-9.0, with optimum temperature at 65°C, and a more than 7 days' half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s-1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer. IMPORTANCE: The genome of Clostridium boliviensis strain E-1 encodes a number of hypothetical enzymes, annotated as glycoside hydrolase-like but not classified in the Carbohydrate Active Enzyme Database (CAZy). A novel thermostable GH43-like enzyme is here characterized as an endo-ß-xylanase of interest in the production of prebiotic xylooligosaccharides (XOs) from different xylan sources. CbE1Xyn43-l is a two-domain enzyme composed of a catalytic GH43-l domain and a CBM6 domain, producing xylotriose as main XO product. The enzyme has homologs in many related Clostridium strains which may indicate a similar function and be a previously unknown type of endo-xylanase in this evolutionary lineage of microorganisms.


Assuntos
Glucuronatos , Glicosídeo Hidrolases , Oligossacarídeos , Xilanos , Xilanos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato , Clostridium/genética , Clostridium/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
4.
New Phytol ; 242(2): 524-543, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413240

RESUMO

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Assuntos
Brachypodium , Xilanos , Animais , Humanos , Xilanos/metabolismo , Lignina/metabolismo , Brachypodium/metabolismo , Parede Celular/metabolismo
5.
Carbohydr Polym ; 331: 121869, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388037

RESUMO

Xylooligosaccharides (XOS) have been employed as prebiotics containing oligomers of varying sizes or molecular ratios. XOS with a low degree of polymerization (DP) has been demonstrated to have high prebiotic potential. However, there is limited information regarding the specific chain length of XOS required to elicit distinct responses in the gut microbiota. In this study, we aimed to explore whether variations in XOS DP could alter the fate of colonic fermentation. Five XOS fractions (BWXFs) with DP ranges of >40, 20-40, 10-20, 5-10, and 2-4 were prepared by beechwood xylan autohydrolysis and tested on human gut microbiota. Extracellular XOS degradation was observed for molecules with a DP exceeding 5. BWXF treatments altered the microbial community structures, and substrate size-dependent effects on the microbial composition and metabolic outputs were observed. Bacteroidaceae were specifically enriched by xylan. Lachnospiraceae were particularly stimulated by XOS with a DP of 20-40 and 2-4. Bifidobacteriaceae were notably enriched by XOS with a DP of 5-20. High butyrate yields were obtained from cultures containing long-chain BWXFs. Microbiota responses differed with XOS DP composition changes, and microbial competition with XOS with a DP of 2-4 requires further exploration.


Assuntos
Prebióticos , Xilanos , Humanos , Fermentação , Xilanos/metabolismo , Colo/metabolismo , Oligossacarídeos/metabolismo , Glucuronatos/metabolismo
6.
Int J Biol Macromol ; 260(Pt 1): 129277, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211918

RESUMO

GH 11 endo-ß-1,4-xylanase (Xy) was a crucial enzyme for xylooligosaccharides (XOS) production. The lower reusability and higher cost of purification has limited the industrial application of Xy. Addressing these challenges, our study utilized various immobilization techniques, different supports and forces for Xy immobilization. This study presents a new method in the development of Fe3O4@PDA@MOF-Xy which is immobilized via multi-point interaction forces, demonstrating a significant advancement in protein loading capacity (80.67 mg/g), and exhibiting remarkable tolerance to acidic and alkaline conditions. This method significantly improved Xy reusability and efficiency for industrial applications, maintaining 60 % activity over 10 cycles. Approximately 23 % XOS production was achieved by Fe3O4@PDA@MOF-Xy. Moreover, the yield of XOS from cobcorn xylan using this system was 1.15 times higher than that of the free enzyme system. These results provide a theoretical and applicative basis for enzyme immobilization and XOS industrial production.


Assuntos
Endo-1,4-beta-Xilanases , Oligossacarídeos , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/metabolismo , Xilanos/metabolismo , Glucuronatos/metabolismo , Fenômenos Magnéticos , Hidrólise
7.
Int J Biol Macromol ; 259(Pt 2): 129205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185299

RESUMO

The use of host to secrete several hemicellulase is a cost-effective way for hemicellulose degradation. In this study, the xylose utilization gene xylAB of Escherichia coli BL21 was knocked out, and the xylanase (N20Xyl), ß-xylosidase (Xys), and feruloyl esterase (FaeLam) were co-expressed in this strain. By measuring the content of reducing sugars generated by enzymatic hydrolysis of wheat bran in the fermentation supernatant, the order of the three enzymes was screened to obtain the optimal recombinant strain of E. coli BL21/∆xylAB/pDIII-2. Subsequently, fermentation conditions including culture medium, inducer concentration, induction timing, metal ions, and glycine concentration were optimized. Then, different concentrations of wheat bran and xylan were added to the fermentation medium for degradation. The results showed that the extracellular reducing sugars content reached the highest value of 33.70 ± 0.46 g/L when 50 g/L xylan was added. Besides, the scavenging rates of hydroxyl radical by the fermentation supernatant was 81.0 ± 1.41 %, and the total antioxidant capacity reached 2.289 ± 0.55. Furthermore, it showed the growth promotion effect on different lactic acid bacteria. These results provided a basis for constructing E. coli strain to efficiently degrade hemicellulose, and the strain obtained has great potential application to transform hemicellulose into fermentable carbon source.


Assuntos
Escherichia coli , Polissacarídeos , Xilanos , Escherichia coli/genética , Escherichia coli/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Fermentação , Fibras na Dieta
8.
Bioresour Technol ; 395: 130387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295956

RESUMO

Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.


Assuntos
Fibras na Dieta , Hidrolases , Humanos , Fibras na Dieta/metabolismo , Ácidos Cumáricos/metabolismo , Xilanos/metabolismo , Endo-1,4-beta-Xilanases/metabolismo
9.
Appl Environ Microbiol ; 90(1): e0170423, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38169280

RESUMO

Catabolism of algal polysaccharides by marine bacteria is a significant process of marine carbon cycling. ß1,3/1,4-Mixed-linkage xylan (MLX) is a class of xylan in the ocean, widely present in the cell walls of red algae. However, the catabolic mechanism of MLX by marine bacteria remains elusive. Recently, we found that a marine Bacteroidetes strain, Polaribacter sp. Q13, is a specialist in degrading MLX, which secretes a novel MLX-specific xylanase. Here, the catabolic specialization of strain Q13 to MLX was studied by multiomics and biochemical analyses. Strain Q13 catabolizes MLX with a canonical starch utilization system (Sus), which is encoded by a single xylan utilization locus, XUL-Q13. In this system, the cell surface glycan-binding protein SGBP-B captures MLX specifically, contributing to the catabolic specificity. The xylanolytic enzyme system of strain Q13 is unique, and the enzymatic cascade dedicates the stepwise hydrolysis of the ß1,3- and ß1,4-linkages in MLX in the extracellular, periplasmic, and cytoplasmic spaces. Bioinformatics analysis and growth observation suggest that other marine Bacteroidetes strains harboring homologous MLX utilization loci also preferentially utilize MLX. These results reveal the catabolic specialization of MLX degradation by marine Bacteroidetes, leading to a better understanding of the degradation and recycling of MLX driven by marine bacteria.IMPORTANCERed algae contribute substantially to the primary production in marine ecosystems. The catabolism of red algal polysaccharides by marine bacteria is important for marine carbon cycling. Mixed-linkage ß1,3/1,4-xylan (MLX, distinct from hetero-ß1,4-xylans from terrestrial plants) is an abundant red algal polysaccharide, whose mechanism of catabolism by marine bacteria, however, remains largely unknown. This study reveals the catabolism of MLX by marine Bacteroidetes, promoting our understanding of the degradation and utilization of algal polysaccharides by marine bacteria. This study also sets a foundation for the biomass conversion of MLX.


Assuntos
Flavobacteriaceae , Rodófitas , Xilanos/metabolismo , Ecossistema , Flavobacteriaceae/metabolismo , Polissacarídeos/metabolismo , Bacteroidetes/metabolismo , Plantas/metabolismo , Rodófitas/metabolismo , Carbono/metabolismo
10.
FEBS Lett ; 598(3): 363-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253842

RESUMO

Xylanases are of significant interest for biomass conversion technologies. Here, we investigated the allosteric regulation of xylan hydrolysis by the Bacillus subtilis GH11 endoxylanase. Molecular dynamics simulations (MDS) in the presence of xylobiose identified binding to the active site and two potential secondary binding sites (SBS) around surface residues Asn54 and Asn151. Arabinoxylan titration experiments with single cysteine mutants N54C and N151C labeled with the thiol-reactive fluorophore acrylodan or the ESR spin-label MTSSL validated the MDS results. Ligand binding at the SBS around Asn54 confirms previous reports, and analysis of the second SBS around N151C discovered in the present study includes residues Val98/Ala192/Ser155/His156. Understanding the regulation of xylanases contributes to efforts for industrial decarbonization and to establishing a sustainable energy matrix.


Assuntos
Bacillus subtilis , Simulação de Dinâmica Molecular , Bacillus subtilis/genética , Sítios de Ligação , Domínio Catalítico , Xilanos/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Especificidade por Substrato
11.
Plant J ; 117(4): 1084-1098, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934816

RESUMO

Plant cell wall polysaccharides, including xylan, mannan, xyloglucan, and pectins, are often acetylated and members of the domain of unknown function 231 (DUF231)/trichome birefringence-like (TBL) family have been shown to be O-acetyltransferases mediating the acetylation of xylan, mannan, and xyloglucan. However, little is known about the O-acetyltransferases responsible for pectin acetylation. In this report, we biochemically characterized a suite of Arabidopsis DUF231/TBL proteins for their roles in pectin acetylation. We generated 24 TBL recombinant proteins in mammalian cells and demonstrated that 10 of them were able to transfer acetyl groups from acetyl-CoA onto the pectins homogalacturonan (HG) or rhamnogalacturonan-I (RG-I), and thus were named pectin O-acetyltransferase 1 to 10 (POAT1 to 10). It was found that POAT2,4,9,10 specifically acetylated HG and POAT5,6 acetylated RG-I, whereas POAT1,3,7,8 could act on both HG and RG-I. The acetylation of HG and RG-I by POATs was further corroborated by hydrolysis with pectin acetylesterases and by nuclear magnetic resonance spectroscopy. In addition, mutations of the conserved GDS and DXXH motifs in POAT3 and POAT8 were shown to lead to a loss of their ability to acetylate HG and RG-I. Furthermore, simultaneous RNA interference downregulation of POAT1,3,6,7,8 resulted in reduced cell expansion, impaired plant growth, and decreased pectin acetylation. Together, our findings indicate that these POATs are pectin O-acetyltransferases involved in acetylation of the pectin polysaccharides HG and RG-I.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Xilanos/metabolismo , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Mananas/metabolismo , Acetilação , Birrefringência , Tricomas/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Catálise , Parede Celular/metabolismo
12.
J Microbiol Biotechnol ; 34(1): 176-184, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38037397

RESUMO

A xylan-degrading bacterial strain, MS9, was recently isolated from soil samples collected in Namhae, Gyeongsangnam-do, Republic of Korea. This strain was identified as a variant of Streptomyces viridodiastaticus NBRC13106T based on 16S rRNA gene sequencing, DNA-DNA hybridization analysis, and other chemotaxonomic characteristics, and was named S. viridodiastaticus MS9 (=KCTC29014= DSM42055). In this study, we aimed to investigate the molecular and biochemical characteristics of a xylanase (XynCvir) identified from S. viridodiastaticus MS9. XynCvir (molecular weight ≍ 21 kDa) was purified from a modified Luria-Bertani medium, in which cell growth and xylanase production considerably increased after addition of xylan. Thin layer chromatography of xylan-hydrolysate showed that XynCvir is an endo-(1,4)-ß-xylanase that degrades xylan into a series of xylooligosaccharides, ultimately converting it to xylobiose. The Km and Vmax values of XynCvir for beechwood xylan were 1.13 mg/ml and 270.3 U/mg, respectively. Only one protein (GHF93985.1, 242 amino acids) containing an amino acid sequence identical to the amino-terminal sequence of XynCvir was identified in the genome of S. viridodiastaticus. GHF93985.1 with the twin-arginine translocation signal peptide is cleaved between Ala-50 and Ala-51 to form the mature protein (21.1 kDa; 192 amino acids), which has the same amino-terminal sequence (ATTITTNQT) and molecular weight as XynCvir, indicating GHF93985.1 corresponds to XynCvir. Since none of the 100 open reading frames most homologous to GHF93985.1 listed in GenBank have been identified for their biochemical functions, our findings greatly contribute to the understanding of their biochemical characteristics.


Assuntos
Streptomyces , Xilanos , Xilanos/metabolismo , RNA Ribossômico 16S/genética , Streptomyces/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Aminoácidos , Clonagem Molecular , Concentração de Íons de Hidrogênio
13.
Bioresour Technol ; 394: 130177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072076

RESUMO

Utilizing thermostable enzymes in biomass conversion processes presents a promising approach to bypass pretreatment, garnering significant attention from the biorefinery industry. A novel discovered α-l-arabinofuranosidase, Abf4980, exhibits exceptional thermostability by maintaining full activity after 24 h of incubation at 70 °C. It effectively acts on polyarabinosides, cleaving α-1,2- and α-1,3-linked arabinofuranose side chains from water-soluble wheat arabinoxylan while releasing xylose. When synergistically combined with the thermostable bifunctional xylanase/ß-glucanase CbXyn10C from Caldicellulosiruptor bescii at an enzyme-activity ratio of 6:1, Abf4980 achieves the highest degradation efficiency for wheat arabinoxylan. Furthermore, Abf4980 and CbXyn10C demonstrated remarkable efficacy in hydrolyzing unmodified wheat bran and corn cob to generate arabinose and xylooligosaccharides. This discovery holds promising opportunities for improving the efficiency of lignocellulosic biomass conversion into fermentable sugars.


Assuntos
Glicosídeo Hidrolases , Xilanos , Hidrólise , Biomassa , Glicosídeo Hidrolases/metabolismo , Xilanos/metabolismo , Clostridiales/metabolismo
14.
Int J Biol Macromol ; 257(Pt 2): 128679, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072346

RESUMO

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable ß-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.


Assuntos
Geobacillus , Xilosidases , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Xilosidases/química , Xilanos/metabolismo , Especificidade por Substrato
15.
Bioresour Technol ; 394: 130249, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154735

RESUMO

Effective production of xylooligosaccharides (XOS) with lower proportion of xylose entails unique and robust xylanases. In this study, two novel xylanases from Trichoderma asperellum ND-1 belonging to glycoside hydrolase families 10 (XynTR10) and 11 (XynTR11) were over-expressed in Komagataella phaffii X-33 and characterized to be robust enzymes with high halotolerance and ethanol tolerant. Both enzymes displayed strict substrate specificity towards beechwood xylan and wheat arabinoxylan. (Glu153/Glu258) and (Glu161/Glu252) were key catalytic sites for XynTR10 and XynTR11. Notably, XynTR11 could rapidly degrade xylan/XOS into xylobiose without xylose via transglycosylation. Direct degradation of corncob using XynTR10 and XynTR111 displayed that while XynTR10 yielded 77% xylobiose and 25% xylose, XynTR11 yielded much less xylose (11%) and comparable amounts of xylobiose (63%). XynTR10 or XynTR111 has great potential as a catalyst for bioconversion of xylan-containing agricultural waste into high-value products (biofuel or XOS), which is of significant benefit for the economy and environment.


Assuntos
Glucuronatos , Glicosídeo Hidrolases , Hypocreales , Xilanos , Humanos , Xilanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Zea mays/metabolismo , Xilose/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Oligossacarídeos/metabolismo , Hidrólise , Especificidade por Substrato
16.
Appl Environ Microbiol ; 90(1): e0101923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126785

RESUMO

Butyrate, a physiologically active molecule, can be synthesized through metabolic interactions among colonic microorganisms. Previously, in a fermenting trial of human fecal microbiota, we observed that the butyrogenic effect positively correlated with the increasing Bifidobacterium population and an unidentified Megasphaera species. Therefore, we hypothesized that a cross-feeding phenomenon exists between Bifidobacterium and Megasphaera, where Megasphaera is the butyrate producer, and its growth relies on the metabolites generated by Bifidobacterium. To validate this hypothesis, three bacterial species (B. longum, B. pseudocatenulatum, and M. indica) were isolated from fecal cultures fermenting hydrolyzed xylan; pairwise cocultures were conducted between the Bifidobacterium and M. indica isolates; the microbial interactions were determined based on bacterial genome information, cell growth, substrate consumption, metabolite quantification, and metatranscriptomics. The results indicated that two Bifidobacterium isolates contained distinct gene clusters for xylan utilization and expressed varying substrate preferences. In contrast, M. indica alone scarcely grew on the xylose-based substrates. The growth of M. indica was significantly elevated by coculturing it with bifidobacteria, while the two Bifidobacterium species responded differently in the kinetics of cell growth and substrate consumption. Coculturing led to the depletion of lactate and increased the formation of butyrate. An RNA-seq analysis further revealed the upregulation of M. indica genes involved in the lactate utilization and butyrate formation pathways. We concluded that lactate generated by Bifidobacterium through catabolizing xylose fueled the growth of M. indica and triggered the synthesis of butyrate. Our findings demonstrated a novel cross-feeding mechanism to generate butyrate in the human colon.IMPORTANCEButyrate is an important short-chain fatty acid that is produced in the human colon through microbial fermentation. Although many butyrate-producing bacteria exhibit a limited capacity to degrade nondigestible food materials, butyrate can be formed through cross-feeding microbial metabolites, such as acetate or lactate. Previously, the literature has explicated the butyrate-forming links between Bifidobacterium and Faecalibacterium prausnitzii and between Bifidobacterium and Eubacterium rectale. In this study, we provided an alternative butyrate synthetic pathway through the interaction between Bifidobacterium and Megasphaera indica. M. indica is a species named in 2014 and is indigenous to the human intestinal tract. Scientific studies explaining the function of M. indica in the human colon are still limited. Our results show that M. indica proliferated based on the lactate generated by bifidobacteria and produced butyrate as its end metabolic product. The pathways identified here may contribute to understanding butyrate formation in the gut microbiota.


Assuntos
Bifidobacterium , Ácido Láctico , Humanos , Ácido Láctico/metabolismo , Bifidobacterium/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Butiratos/metabolismo , Megasphaera/metabolismo , Fermentação
17.
Sci Rep ; 13(1): 19182, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932303

RESUMO

Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.


Assuntos
Saccharomyces cerevisiae , Xilosidases , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Xilitol/metabolismo , Oligossacarídeos/metabolismo , Fermentação , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Xilosidases/metabolismo , Acetatos/metabolismo
18.
Plant Physiol ; 194(1): 153-167, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37801619

RESUMO

Xylan is a crosslinking polymer that plays an important role in the assembly of heterogeneous cell wall structures in plants. The pollen wall, a specialized cell wall matrix, exhibits diverse sculpted patterns that serve to protect male gametophytes and facilitate pollination during plant reproduction. However, whether xylan is precisely anchored into clusters and its influence on pollen wall patterning remain unclear. Here, we report xylan clustering on the mature pollen surface in different plant species that is indispensable for the formation of sculpted exine patterns in dicot and monocot plants. Chemical composition analyses revealed that xylan is generally present at low abundance in the mature pollen of flowering plants and shows plentiful variations in terms of substitutions and modifications. Consistent with the expression profiles of their encoding genes, genetic characterization revealed IRREGULAR XYLEM10-LIKE (IRX10L) and its homologous proteins in the GT47 family of glycosyltransferases as key players in the formation of these xylan micro-/nano-compartments on the pollen surface in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). A deficiency in xylan biosynthesis abolished exine patterning on pollen and compromised male fertility. Therefore, our study outlines a mechanism of exine patterning and provides a tool for manipulating male fertility in crop breeding.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Xilanos/metabolismo , Melhoramento Vegetal , Pólen/genética , Pólen/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
New Phytol ; 240(6): 2353-2371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823344

RESUMO

Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit ß1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan ß-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and ß-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that ß-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.


Assuntos
Arabidopsis , Humanos , Arabidopsis/metabolismo , Café/metabolismo , Xilanos/metabolismo , Oligossacarídeos/metabolismo , Parede Celular/metabolismo , Açúcares/metabolismo
20.
Sci Rep ; 13(1): 17332, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833340

RESUMO

Xylanases are important for the enzymatic breakdown of lignocellulose-based biomass to produce biofuels and other value-added products. We report functional and structural analyses of TsaGH11, an endo-1,4-ß-xylanase from the hemicellulose-degrading bacterium, Thermoanaerobacterium saccharolyticum. TsaGH11 was shown to be a thermophilic enzyme that favors acidic conditions with maximum activity at pH 5.0 and 70 °C. It decomposes xylans from beechwood and oat spelts to xylose-containing oligosaccharides with specific activities of 5622.0 and 3959.3 U mg-1, respectively. The kinetic parameters, Km and kcat towards beechwood xylan, are 12.9 mg mL-1 and 34,015.3 s-1, respectively, resulting in kcat/Km value of 2658.7 mL mg-1 s-1, higher by 102-103 orders of magnitude compared to other reported GH11s investigated with the same substrate, demonstrating its superior catalytic performance. Crystal structures of TsaGH11 revealed a ß-jelly roll fold, exhibiting open and close conformations of the substrate-binding site by distinct conformational flexibility to the thumb region of TsaGH11. In the room-temperature structure of TsaGH11 determined by serial synchrotron crystallography, the electron density map of the thumb domain of the TsaGH11 molecule, which does not affect crystal packing, is disordered, indicating that the thumb domain of TsaGH11 has high structural flexibility at room temperature, with the water molecules in the substrate-binding cleft being more disordered than those in the cryogenic structure. These results expand our knowledge of GH11 structural flexibility at room temperature and pave the way for its application in industrial biomass degradation.


Assuntos
Endo-1,4-beta-Xilanases , Polissacarídeos , Endo-1,4-beta-Xilanases/química , Xilanos/metabolismo , Especificidade por Substrato , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...